
Épreuve blanche d’Olympiade : Corrigé

I) Tous distinctes [Exercice national 2024]
Correction
1. Si A est de cardinal n, le nombre de parties de A est 2n, puisque choisir une partie de A revient à choisir, pour chaque élément

de A, si il appartient à la partie ou non (2 choix).
Le nombre de parties de A non vides est donc 2n − 1.

2. Pour {1, 3, 5}, il s’agit de vérifier que les 23 − 1 = 7 sommes possibles sont toutes distinctes.
Pour {4, 6, 7, 9} il suffit de remarquer que 4 + 9 = 6 + 7.

3. Si A contient 0, alors ou bien n = 1 et A = {0}, qui est bien STD, ou bien n > 1 et A contient un autre élément, x1, et on a
alors x1 = x1 + 0, donc A n’est pas STD.

4. a. Les sommes d’éléments de A sont en particuliers des sommes d’éléments de B. Comme B est STD, toutes les sommes sont
distinctes, donc A est STD.

b. Par contraposée de la question précédente, si B est STD, A l’est aussi.
5. Montrons que A′ = A ∪ { 1

2 } est STD :
On considère deux sommes d’éléments de A′ correspondant à des parties distinctes. On les note x1 + · · · + xℓ et y1 + · · · + ym.
Si aucune des deux sommes ne contient l’élément 1

2 , alors ce sont des sommes d’éléments de A, et comme A est STD, les sommes
sont différentes.
Si une des sommes contient l’élément 1

2 , et l’autre non alors comme les éléments de A sont entiers, une des sommes ne sera pas
entière et l’autre sera entière, donc elles seront distinctes.
Si les deux sommes contiennent l’élément 1

2 , on peut le simplifier et obtenir une égalité entre deux sommes de A, ce qui semble
exclu par le fait que A est STD.
En fait, l’énoncé est erroné. Le problème vient du fait que parmi les deux sommes de A obtenues, l’une peut être vide (c’est-à-dire
ne contenir aucun élément). Un contre-exemple à l’énoncé est alors A = {−1, 1}, qui est bien STD, alors que {−1, 1, 1

2 } ne
n’est pas, car 1

2 = 1
2 + 1 + (−1).

Un autre contre exemple est A = {0}, qui est STD, alors que { 1
2 , 0} ne l’est pas.

L’énoncé aurait du préciser que les éléments de A étaient des entiers naturels non nuls.
Pour ce qui est de A ∪ { 1

2 ,
√

2}. Il s’agit de dire que
√

2 est irrationnel. Alors il n’est pas possible d’avoir une égalité de la forme
q1 +

√
2 = q2 avec q1, q2 ∈ Q. Le même raisonnement que pour A ∪ { 1

2 } permet de conclure.
6.
7. L’algorithme suivant n’est pas efficace, puisque comme on le verra plus tard, la suite (un) est en fait géométrique.

def calcul_u(n): # Calcule u_n
# On construit une liste des valeurs de la suite
l = [1] # l contient u1
for i in range(n-1): # Pour calculer u_n, on itère n-1 fois

s = 0 # On va calculer la somme des précédents termes, + 1
for e in l: # pour chaque élément de la liste

s = s + e
l.append(s+1)

return l[-1] # Le dernier élément de l, c'est aussi l[n-1]

8. Il s’agit de commencer par remarquer que tous les termes de la suite sont positifs. (Formellement c’est une récurrence : u1 est
bien positif et si u1, . . . , un sont positifs, alors un+1 l’est)
Alors, pour tout n ≥ 1, on a un+1 − un = u1 + · · · + un−1 + 1 > 0, donc (un) est strictement croissante.

9. Imaginons que deux sommes soient égales : on peut l’écrire
un1 + un2 + · · · + unk

= um1 + um2 + · · · + umℓ
, pour des indices n1 < . . . < nk et m1 < . . . < mℓ.

Justifions que nécessairement, nk = mℓ : Si ce n’était pas le cas, on aurait par exemple nk > mℓ, mais unk
est, d’après la

relation de récurrence, égal à la somme des termes précédents de la suite, plus 1. Comme les termes de la suite sont positifs, on
a forcément unk

> um1 + um2 + · · · + umℓ
, ce qui contredit l’égalité des deux sommes.

Comme unk
= umℓ

, on peut simplifier ces deux termes dans les deux sommes. Puis recommencer avec les deux nouveaux plus
grand termes, etc, au final on obtiendra que les deux sommes contiennent forcément tous les mêmes termes.

10. Pour n ≥ 2, on a un+1 = u1 + · · · + un + 1 = u1 + · · · + un−1 + un + 1 = (un − 1) + un + 1 = 2un, et par ailleurs, pour
n = 1, on a un+1 = u2 = 2 = 2 · 1 = 2u1.
la suite est donc bien géométrique.

11. a. L’ensemble {u1, . . . , un} étant STD, toutes ses 2n − 1 sommes possibles sont distinctes, et comme les ui sont ≥ 1, toutes
les sommes sont ≥ 1. La plus grande somme est donc forcément ≥ 2n − 1, autrement dit, u1 + · · · + un ≥ 2n − 1.

b. On a u1 + · · ·+un ≥ 2n −1, et la suite (un) est strictement croissante, donc un est le plus grand des termes, donc il est plus
strictement plus grand que la moyenne des termes, autrement dit un > 2n−1

n (pour n = 1, on a seulement un ≥ 2n−1
n ).

Cela s’écrit nun > 2n − 1, et comme nun est un entier, nun ≥ 2n, donc un ≥ 2n

n .
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II) Une descente infinie [Exercice national 2023]
Correction
1. Les relations coefficients-racines donnent b = −(r1 + r2) et c = r1r2.

Pour les justifier : on a ∀x ∈ R, P (x) = (x − r1)(x − r2), donc pour tout x ∈ R, x2 + bx + c = x2 − (r1 + r2)x + r1r2. En
prenant x = 0, on obtient c = r1r2, puis en écrivant ce que l’on obtient en x = 1, on trouve b = −(r1 + r2).

2. Si b ≤ 0 et c ≥ 0, alors r1r2 = c donc r1 et r2 ont le même signe, et r1 + r2 = −b ≥ 0, donc r1 et r2 sont positives (ou nulles).
3. a. Si (x1, x2, x3) vérifient x2

1 + x2
2 + x2

3 = αx1x2x3, alors le terme de gauche de l’égalité est ≥ 0, donc αx1x2x3 ≥ 0, donc
x1x2x3 ≥ 0.
On en déduit que x2

1 + x2
2 + x2

3 = α|x1x2x3|, ce qui est équivalent à |x1|2 + |x2|2 + |x3|2 = α|x1||x2||x3|. Le triplet
(|x1|, |x2|, |x3|) est donc solution de (E).

b. C’est clair.
4. Si (x1, x2, x3) est solution, le triplet (x2, x1, x3) l’est également. Plus généralement, toute permutation des trois entiers est

encore solution.
5. Si (E) admet une solution dans Z3 non triviale (c’est-à-dire différente de (0, 0, 0)), d’après une question précédente elle admet

une solution dans N3 non triviale (x1, x2, x3), et d’après la question 4., quitte à réordonner les termes, on peut supposer que
x1 ≤ x2 ≤ x3.

6. Supposons que x1 = 0. Alors x2 et x3 vérifient x2
2 + x2

3 = 0. Le membre de gauche étant une somme de termes positifs,
nécessairement x2 = 0 et x3 = 0, donc (x1, x2, x3) = (0, 0, 0), ce qui contredit l’hypothèse.

7. a. Découle des définitions.
b. Par hypothèse x3 est racine de Q.
c. Q(x2) = (3 − αx1)x2

2 + (x2
1 − x2

2) est une simple vérification (développer le membre de droite).
Alors, comme 0 ≤ x1 ≤ x2, on a x2

1 − x2
2 ≤ 0 (croissance de la fonction carré).

Par ailleurs, comme x1 > 0, on a x1 ≥ 1. Comme α ≥ 4, on en déduit que 3 − αx1 < 0, et comme x2 ≥ x1 > 0, on a
(3 − αx1)x2

2 < 0.
Conclusion : Q(x2) < 0.

d. On a Q(0) = x2
1 + x2

2 > 0.
e. D’après le théorème des valeurs intermédiaires, comme Q(0) > 0 et Q(x2) < 0, le polynôme Q doit s’annuler entre 0 et

x2 : il existe y ∈ ]0,x2[ tel que Q(y) = 0.
Comme y < x2 ≤ x3, cette racine y est distincte de x3.
On a donc 0 < y < x2 < x3, l’inégalité x2 < x3 étant justifiée par le fait que Q(x2) < 0 alors que Q(x3) = 0.

f. Comme y est racine de Q, d’après une question précédente, (x1, x2, y) est solution de (E).
Reste à justifier que y est entier. Cela vient du fait que, d’après la sous-partie 1), la somme des deux racines de Q doit être
un entier, et que l’autre racine de Q (qui est x3) est entière.

8. Si on range (x1, x2, y) par ordre croissant, on obtient ou bien (x1, y, x2), ou bien (y, x1, x2).
Le raisonnement de la question 7. permet de trouver un z < x2 tel que (x1, y, z) soit solution, (ou (y, x1, z), ce qui revient au
même).

9. Si (E) admet une solution non triviale, on a vu que (E) admettait une solution non triviale dans N3.
À partir d’une telle solution (x1, x2, x3) vérifiant x1 ≤ x2 ≤ x3 on a vu que x1, x2, x3 > 0 et la question précédente (en
appliquant 2 fois le raisonnement de 7.) permet d’obtenir une solution (x1, y, z) telle que y, z < x3. Il reste la possibilité que
x1 = x3, auquel cas en réappliquant une nouvelle fois le raisonnement de la question 7., on trouvera une solution (y, z, w) telle
que y, z, w < x3.
Dans tous les cas, on peut donc construire une nouvelle solution (y, z, w) dont les trois termes sont > 0 et < x3. Autrement
dit, une nouvelle solution dont les trois termes sont > 0, et dont le maximum est strictement plus petit que celui de la solution
initiale.
En itérant ceci, on construirait une suite d’entiers naturels (les maximums des solutions) strictement décroissante, ce qui est
impossible.
Conclusion : il n’existe pas de solution autre que (0, 0, 0).

10.
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III) Partage équitable [Exercice académique 2008]
Correction
1. L’aire de chacun des deux triangles rectangles est x

2 .
Comme l’aire du carré est 1, l’aire de la troisième partie est 1 − 2 x

2 = 1 − x.
Les trois parties seront de même aires si et seulement si x

2 = 1 − x, c’est-à-dire si et seulement si 3x = 2 ⇔ x = 2
3 .

2. La zone grisée est un triangle rectangle, de côtés 1 − x, donc d’aire (1−x)2

2 .

La nouvelle troisième partie a donc comme aire 1 − x − (1−x)2

2 .

Les trois parties auront la même aire si et seulement si 1−x − (1−x)2

2 = x
2 ⇔ 2−2x− (1−x)2 = x ⇔ 2 −2x−1 +2x−x2 =

x ⇔ 1 − x2 = x ⇔ 1 − x − x2 = 0.
Cette équation du second degré a pour discriminant ∆ = 1 + 4 = 5 et pour racines 1±

√
5

−2 = −1±
√

5
2 . L’une de ses racine est

< 0, et l’autre est
√

5−1
2 ≃ 0, 6, qui correspond à la seule construction possible.

3. Dans la Figure 3, on a donc pris x =
√

5−1
2 , de sorte que 1 − x − x2 = 0.

Le point d’intersection de la droite (HJ) avec la diagonale (AC), que l’on note U , a pour coordonnées (x, x).
La question est de savoir si ce point appartient à la droite (DI), qui relie le point D de coordonnées (0, 1) au point I de
coordonnées (1, 1 − x).

Pour cela, il suffit de vérifier si les vecteurs
−−→
DU de coordonnées

(
x

x − 1

)
et

−→
DI de coordonnées

(
1

1 − x − 1

)
=

(
1

−x

)
sont

colinéaires.
Ils sont colinéaires si et seulement si le produit en croix x · (−x) − (x − 1) · 1 est nul, et ce dernier vaut x · (−x) − (x − 1) · 1 =
−x2 − x + 1 = 0, par définition de x.
Les trois droites sont donc bien concourantes.

IV) Un compte de fées [Exercice académique 2017]
Correction
1. Pour trouver le prince, il suffit d’ouvrir deux jours de suite la chambre numéro 2.
2. La remarque fondamentale est que la parité du numéro de la chambre du prince change chaque jour. S’il est dans une chambre

paire le premier jour, il sera dans une chambre impaire le second, paire le troisième, etc.

a. On ouvre la chambre 2 le premier jour. Si on ne trouve pas le prince, il est forcément dans une chambre de numéro ≥ 4,
donc le lendemain il sera dans une chambre de numéro ≥ 3.
On ouvre la chambre 3 le deuxième jour. Si on ne le trouve pas, il est forcément dans une chambre de numéro impair, donc
≥ 5. Le lendemain, il sera dans une chambre de numéro ≥ 4.
On ouvre la chambre 4 le troisième jour, etc.
On ouvrira alors la chambre 16 le 15ème jour, sachant qu’à ce moment, si on a pas déjà attrapé le prince, il est forcément
dans une chambre de numéro pair de numéro ≥ 16, donc il est forcément dans la chambre que l’on ouvre.

b. On commence par les 15 premiers essais de la stratégie précédente. Si le prince était initialement dans une chambre paire,
on le trouvera.
À l’issue de ces 15 premiers essais, si on n’a pas attrapé le prince, c’est qu’il était initialement dans une chambre impair, et
termine le 15ème jour dans une chambre impair. Il sera alors, le 16ème jour dans une chambre pair, et on peut, du 16ème
au 30ème jour, refaire les mêmes 15 essais (chambre 2, puis 3, puis. . .) qui permettront forcément de trouver le prince.

3. a. Considérons un numéro de chambre i compris entre 2 et 16. Supposons par l’absurde que la stratégie de Clara n’ouvrait
cette chambre qu’une seule fois, ou aucune fois.
Si elle n’ouvrait cette chambre aucune fois, le roi peut dire au prince de se placer initialement dans cette chambre, puis, le
deuxième jour, de se déplacer ou bien à droite ou bien à gauche dans la chambre que Clara n’ouvrira pas (on sait quelle
chambre elle va ouvrir). Puis il reviendra dans la chambre i, avant de recommencer. Ainsi, il ne sera jamais attrapé.
Si elle n’ouvrait cette chambre qu’une seule fois, et si cette fois tombe un jour pair, la même stratégie marche. Si l’unique
fois ou elle ouvre la chambre est un jour impair, on décale la stratégie, en commençant le premier jour dans une des
chambres adjacente à i.

b. Le mois de février ne comprend qu’au plus 29 jours, donc Clara n’aura qu’au plus 29 essais. En particulier, sa stratégie ne
peut pas ouvrir au moins deux fois toutes les chambres 2 à 16.
D’après la question précédente, en connaissant la suite de Clara, le roi peut empêcher le mariage.

4. Stratégie de Clara : ouvrir : 2, puis 3, puis 3b, puis 3, puis 4, puis 4a, puis 4, puis 5, puis 6, puis 6c, puis 6, puis 6a, puis 6, puis 7.
Puis recommencer, dans le sens inverse : 7, puis 6, puis 6a,. . .
Cette stratégie attrape le prince, en 28 essais.
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